Enhancement of radiation response with bevacizumab
نویسندگان
چکیده
BACKGROUND Vascular endothelial growth factor (VEGF) plays a critical role in tumor angiogenesis. Bevacizumab is a humanized monoclonal antibody that neutralizes VEGF. We examined the impact on radiation response by blocking VEGF signaling with bevacizumab. METHODS Human umbilical vein endothelial cell (HUVEC) growth inhibition and apoptosis were examined by crystal violet assay and flow cytometry, respectively. In vitro HUVEC tube formation and in vivo Matrigel assays were performed to assess the anti-angiogenic effect. Finally, a series of experiments of growth inhibition on head and neck (H&N) SCC1 and lung H226 tumor xenograft models were conducted to evaluate the impact of bevacizumab on radiation response in concurrent as well as sequential therapy. RESULTS The anti-angiogenic effect of bevacizumab appeared to derive not only from inhibition of endothelial cell growth (40%) but also by interfering with endothelial cell function including mobility, cell-to-cell interaction and the ability to form capillaries as reflected by tube formation. In cell culture, bevacizumab induced a 2 ~ 3 fold increase in endothelial cell apoptosis following radiation. In both SCC1 and H226 xenograft models, the concurrent administration of bevacizumab and radiation reduced tumor blood vessel formation and inhibited tumor growth compared to either modality alone. We observed a siginificant tumor reduction in mice receiving the combination of bevacizumab and radiation in comparison to mice treated with bevacizumab or radiation alone. We investigated the impact of bevacizumab and radiation treatment sequence on tumor response. In the SCC1 model, tumor response was strongest with radiation followed by bevacizumab with less sequence impact observed in the H226 model. CONCLUSIONS Overall, these data demonstrate enhanced tumor response when bevacizumab is combined with radiation, supporting the emerging clinical investigations that are combining anti-angiogenic therapies with radiation.
منابع مشابه
The microscopic dose enhancement factor measurment of bismuth nanoparticles in external radiation therapy using MRI polymer gel dosimetery
Introduction: Bismuth-based nanoparticles having high atomic number and electron density, besides of being utilized as CT contrast agent, stand as a strongly proposed method for dose enhancement in radiotherapy. Embedded nanoparticle in polymer gel dosimeter poses the first step to assess the dose enhancement capability in nanoparticles. To this end, MAGICA gel dosimeter, whic...
متن کاملDose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy
Background: Radiation-sensitive polymer gels are among the most promising three-dimensional dose verification tools and tissue-like developed to date. Among the special features of this type of dosimeters, is be doped with other elements or chemicals which made them appropriate for investigating of dose enhancement with contrast agents, by high atomic number. Material and Methods: In this study...
متن کاملDiscrepant MR and [18F]Fluoroethyl-L-Tyrosine PET Imaging Findings in a Patient with Bevacizumab Failure
Antiangiogenic treatment using bevacizumab may cause difficulties in distinguishing between antivascular and true antitumor effects when using MRI response criteria based on changes of contrast enhancement (i.e., Macdonald criteria). Furthermore, more precise tumor response assessment criteria (i.e., RANO criteria), which incorporate nonenhancing T2/FLAIR sequences into Macdonald criteria, may ...
متن کاملBevacizumab for the Treatment of Radiation-Induced Cerebral Necrosis: A Systematic Review of the Literature
Radiation necrosis (RN) of brain tissue is a serious late complication of brain irradiation and recently bevacizumab has been suggested as treatment option of RN. There is a lack of data in the literature regarding the effectiveness of bevacizumab for the treatment of RN. The purpose of this review was to perform a comprehensive analysis of all reported cases using bevacizumab for the treatment...
متن کاملResolution of Cystic Enhancement to Add-On Tumor Treating Electric Fields for Recurrent Glioblastoma after Incomplete Response to Bevacizumab
The NovoTTF-100A device emits alternating tumor treating electric fields (TTFields) that interfere with cytokinesis and chromosome segregation during mitosis. Because it has a similar efficacy to cytotoxic chemotherapy, the device has been approved by the United States Food and Drug Administration for the treatment of recurrent glioblastoma. Although bevacizumab has been in use for recurrent gl...
متن کامل